首頁 >> 新聞中心 >>行業(yè)科技 >> 一種機(jī)載超聲波液位傳感器的設(shè)計
详细内容

一種機(jī)載超聲波液位傳感器的設(shè)計

引言

民用飛機(jī)中廢水處理系統(tǒng)是不可或缺的部分,其中廢水儲箱是處理系統(tǒng)的重要組成部件其液位檢測對整個系統(tǒng)的正常運轉(zhuǎn)起決定性作用目前常用的液位測量手段主要有接觸式和非接觸式。 接觸式主要有人工檢尺法、 浮子測量裝置、 伺服式、 電容式和磁致伸縮式的液位計其共同特點是感應(yīng)元件與被測液體接觸, 存在磨損且易被液體黏住和腐蝕等風(fēng)險非接觸式主要有微波雷達(dá)、 射線、 激光及超聲液位計, 其共同特點是感應(yīng)元件不與被測液體接觸, 不受介質(zhì)影響。 與雷達(dá)射線和激光等方式相比, 超聲液位計系統(tǒng)相對簡單不易受電磁干擾, 易于小型化適合機(jī)載應(yīng)用場景, 且成本相對較低利于民用推廣, 在工業(yè)生產(chǎn)和科學(xué)研究中應(yīng)用廣泛因此, 本文首選超聲波液位計作為廢水儲箱的液位檢測手段

傳統(tǒng)超聲波液位計多通過液體與氣體界面反射的回波來判斷液位, 通常安裝在容器的頂部或底部。飛機(jī)的廢水儲箱多為膠囊形結(jié)構(gòu)聲波會發(fā)生多次反射產(chǎn)生混響, 使噪聲變大影響信號檢測; 此外, 廢水箱中的雜質(zhì)沉積嚴(yán)重影響聲波的傳播效率, 同樣導(dǎo)致液位檢測失效。 根據(jù)調(diào)研機(jī)載廢水儲箱對液位的檢測為定點判斷, 即液位達(dá)到特定位置時, 檢測系統(tǒng)報警。 針對上述需求, 本文設(shè)計了一種用于定點檢測的低功耗超聲波液位傳感器, 基于超聲波透射效率、 聲衰減諧振頻率等參數(shù)隨介質(zhì)的變化, 利用置于全封閉殼體內(nèi)部的超聲波換能器對通過檢測接收信號幅的變化, 對換能器對之間的傳播介質(zhì)進(jìn)行判斷, 達(dá)到區(qū)分液體和氣體的目的, 最終實現(xiàn)液位的定點檢測

理論分析

1.1 透射系數(shù)
平面聲波從介質(zhì)垂直入射到介質(zhì), 在分界面上的聲壓透射系數(shù)tp

0803dbec-2888-4bd4-9066-0584a14eeb95.png

聲強(qiáng)透射系數(shù)ti

8173d7c2-503a-4f63-bd93-cc1adfb34907.png

由式) 、 (可見, 介質(zhì)分界面兩邊的阻抗差異將直接決定聲壓和聲強(qiáng)的透射系數(shù)。 

1.2 聲衰減

實際工程中, 聲波在大多數(shù)材料中傳播時存在衰減且可用冪函數(shù)表達(dá)為

7b7e3c84-b789-4497-b597-a07d2a935764.png

1.3 諧振頻率

考慮輻射阻抗的情況下, 超聲換能器的諧振頻率

a7b6b2c8-1b4f-4268-9aae-dacb316e3ee7.png

式中m為換能器等效質(zhì)量;Cm為換能器等效力順;ms為介質(zhì)共振質(zhì)量

為了便于區(qū)分空氣和水的幅值, 擬選擇多個頻段進(jìn)行分析選用平面活塞發(fā)射器作為當(dāng)前結(jié)構(gòu)的近似, 高頻輻射(a≥λ其輻射阻抗近似為
004957f6-5779-42a7-99fd-0703d16157d3.png

輻射聲功率近似為

9fbb5107-13fc-46e4-9dbe-9006f560b592.png

由式可見, 介質(zhì)對輻射阻抗和輻射聲功率影響顯著。 介質(zhì)不同時, 結(jié)構(gòu)的諧振頻率發(fā)生偏移, 輻射阻抗隨之發(fā)生偏移諧振狀態(tài)下, 其表面振速在特定頻段內(nèi)為最大值, 其輻射聲功率也最大,此時設(shè)備可在較低功耗下工作

傳感器設(shè)計

2.1 總體設(shè)計

傳感器整體設(shè)計如圖所示。 主控芯片發(fā)出特定頻率的脈沖序列, 并設(shè)定一定的邏輯時序來控制模擬開關(guān), 從而控制超聲波換能器的發(fā)射與接收; 模擬開關(guān)對接收到的信號進(jìn)行電流放大, 并進(jìn)行電壓比較, 再由主控芯片對數(shù)據(jù)進(jìn)行采集并判斷是否液位到達(dá)

c31dd44a-7b0e-4ce0-b80e-83d4c2ea0ea9.png

液位傳感器原理圖

為了提高監(jiān)測的準(zhǔn)確性, 采用雙重判斷的設(shè)計。超聲波換能器對的兩極既是發(fā)射端也是接收端兩極同時發(fā)射超聲波信號, 同時對收到的信號進(jìn)行分析, 當(dāng)兩端的判斷結(jié)果一致時才作為最終判斷結(jié)果。

2.2 結(jié)構(gòu)設(shè)計及有限元分析

根據(jù)理論分析對于以液體為主的廢水液位定點監(jiān)測, 可通過接收信號幅值來實現(xiàn)本文設(shè)計了一種全封閉式檢測結(jié)構(gòu)見圖) , 浸入水中的金屬殼體為全封閉超聲換能器部分在殼體內(nèi)側(cè), 與殼體剛性連接。 發(fā)射換能器的超聲波穿過金屬殼體在介質(zhì)中傳播后再穿過殼體, 到達(dá)接收換能器, 并轉(zhuǎn)換成電信號, 通過分析、 處理可判定是液體或空氣, 從而實現(xiàn)液位定點檢測。

a7ecdf66-fca8-4538-9b9d-4285ad00b23f.png

檢測結(jié)構(gòu)示意圖

為驗證上述結(jié)構(gòu)的有效性, 對結(jié)構(gòu)進(jìn)行有限元分析, 建立了結(jié)構(gòu)的軸對稱有限元模型為了簡化,僅分析了與換能器連接的殼體部分未考慮由金屬殼體直接傳播的超聲波, 故采用軸對稱模型。 有限元分析的主要目的是對液體和氣體介質(zhì)的透射效果進(jìn)行量化對比, 因此模型僅包含了PVC 、 鋁殼及傳輸介質(zhì)部分, 在一側(cè) PVC 上施加位移載荷, 在另一側(cè)的圓心位置提取位移量, 并繪制頻響曲線。 有限元模型如圖所示。

5d33f8bb-80f5-4e79-88ff-b0fc83c6e33d.png

有限元模型示意圖

2.3 超聲波換能器選型

頻率是超聲波換能器選型時考慮的重要參數(shù)須綜合考慮聲場指向性和能量損耗等問題以確定換能器的工作頻率。

根據(jù)實際應(yīng)用場景,液體中可能有許多大小不一的固體懸浮雜質(zhì),超聲波的傳播間距需要越大越好; 但由于密封性設(shè)計超聲波經(jīng)過2mm 的鋁制外殼傳播出去, 有較大的衰減,傳播間距需要越小越好最終選定傳播間距為20 mm。 同時考慮到小型化的需求, 初步選用40kHz200 kHz,1 MHz 頻率的種換能器, 測試其發(fā)射信號分別經(jīng)過水和空氣后的幅值變化情況其中40 kHz換能器基于壓電陶瓷的彎曲振動,200kHz1MHz換能器基于厚度振動。 測試結(jié)果如表所示。

40kHz的信號在水中幅值遠(yuǎn)低于空氣這是因為換能器的驅(qū)動結(jié)構(gòu)使其在阻力較大的水中時, 振動位移減小或者不振動, 因此排除該型號換能器;200kHz的信號在水中和在空氣中幅值都很低, 這是因為其內(nèi)部結(jié)構(gòu)影響了傳遞效率, 該換能器同樣不適用于本文的場景;1 MHz的信號在水中的幅值遠(yuǎn)高于空氣故選用1 MHz作為檢測頻率。

常用的分析接收信號幅頻特性的方法包括點頻法和掃頻法。 如果采用點頻信號, 由于不同的介質(zhì)條件會導(dǎo)致接收匹配不同, 從而導(dǎo)致接收端的信號幅度有較大波動, 難以通過幅值正確判斷液位計中間是否存在介質(zhì)。 采用掃頻信號時, 在不同的頻率條件下, 波長不同可以有效地避開不同大小的障礙物, 且在不同密度介質(zhì)條件下, 根據(jù)不同的頻率匹配條件可使超聲換能器的阻抗匹配達(dá)到最佳狀態(tài), 從而使接收信號幅值維持在一個較穩(wěn)定的值, 實現(xiàn)準(zhǔn)確監(jiān)測。

因此本文采用以1MHz為中心頻率的掃頻信號作為超聲波換能器的激勵信號。

2.4 硬件電路設(shè)計

監(jiān)測系統(tǒng)電路采用C8051F系列主控芯片, 用以產(chǎn)生1 MHz 的掃頻方波。 方波信號經(jīng)過放大器和跟隨器的處理并進(jìn)行阻抗匹配后到達(dá)超聲波換能器, 換能器再輸出對應(yīng)頻率的聲信號同時, 換能器接收到的信號經(jīng)過電壓比較器后又送入主控芯片進(jìn)行判斷, 從而實現(xiàn)液位是否到達(dá)的準(zhǔn)確判斷。
硬件電路可分為四部分
發(fā)射電路用于超聲波換能器信號的激勵,使超聲波發(fā)出特定頻率的信號
分時復(fù)用電路用于實現(xiàn)檢測的準(zhǔn)確性并滿足故障自檢功能, 采用多路模擬開關(guān)來實現(xiàn)
接收電路與信號解調(diào)電路用于對接收到的信號進(jìn)行放大處理, 并將放大的信號進(jìn)行解調(diào), 送入主控芯片進(jìn)行處理。 由于整個傳感器是弱信號檢測, 因此, 解調(diào)前要對信號進(jìn)行電流放大電壓放大低電壓過濾三級處理
報警與故檢電路由于在實際應(yīng)用中檢測的很多固液混合物是易燃易爆的危險品, 需要將外部的電源與內(nèi)部進(jìn)行隔離這里采用光耦方式進(jìn)行隔離設(shè)計, 當(dāng)液位到達(dá)或系統(tǒng)故障時, 主控芯片發(fā)出控制信號, 光耦輸出高電平此時內(nèi)部是低電壓, 外部是高電壓滿足實際的應(yīng)用需求。
頂層算法設(shè)計

在整體設(shè)計中為了實現(xiàn)對液位是否到達(dá)的準(zhǔn)確判斷, 采用了兩個超聲波換能器 。 首先 發(fā)射 接收, 判讀 接收到的信號是在空氣中還是固液混合物中然后 發(fā)射 接收, 判斷 接收到的信號是在空氣中還是固液混合物中。 用兩者共同的結(jié)果進(jìn)行綜合判斷, 具體設(shè)計思路的程序流程圖如圖所示

主控芯片MCU產(chǎn)生1 MHz 的掃頻方波, 并通過控制模擬開關(guān), 使換能器 發(fā)射、 換能器 接收, 接收到的信號進(jìn)入 MCU通過幅度判斷并對應(yīng)不同狀態(tài)分別記錄為 、。 然后, 通過控制模擬開關(guān), 切換到換能器 發(fā)射換能器 接收接收到的信號進(jìn)入 MCU, 通過幅度判斷并對應(yīng)不同狀態(tài)分別記錄為 、。 最終進(jìn)行綜合判斷, 若結(jié)果為、, 則判斷為到達(dá)液位; 若結(jié)果為 , 則判斷為未到達(dá)液位; 其余判斷為故障狀態(tài)

實驗結(jié)果與數(shù)據(jù)分析

為了驗證傳感器的有效性, 分別采用點頻和掃頻的方法對其進(jìn)行測試。 由于飛機(jī)廢水箱內(nèi)液體密度變化較大, 故而考慮聲波傳播介質(zhì)為空氣清水、有較多懸浮雜質(zhì)的污水種情況。 掃頻信號經(jīng)過種介質(zhì)傳 播 后 到 達(dá) 接 收 極 的 信 號 波 形 如 圖 所示。

787ddd87-060d-4906-8cba-5a60a8a8e608.png

掃頻信號經(jīng)過空氣到達(dá)接收極的信號波形

75d2dc68-f537-4b75-b653-ef641a85babd.png

掃頻信號經(jīng)過清水到達(dá)接收極的信號波形
0dda9cda-6e6a-40b4-b3cd-8ffa6758e811.png

掃頻信號經(jīng)過污水到達(dá)接收極的信號波形

由圖可見, 信號經(jīng)空氣傳播后的幅值明顯低于經(jīng)清水和污水傳播后的信號幅值, 且清水和污水情況下接收信號幅值相近這說明液體密度和渾濁度的差異對接收信號的幅值影響較小。 傳感器可以較準(zhǔn)確、 穩(wěn)定地區(qū)分空氣和液體不會因液體差異導(dǎo)致誤判。

結(jié)束語
本文基于超聲波的基本特性, 通過有限元分析設(shè)計了合理、 有效的封閉式檢測結(jié)構(gòu)采用掃頻信號作為激勵信號, 同時設(shè)計了雙重判斷的算法對接收信號進(jìn)行分析以辨別超聲波的傳輸介質(zhì)是空氣還是液體。 試驗結(jié)果表明, 本文設(shè)計的超聲波液位傳感器可以較準(zhǔn)確、 穩(wěn)定地監(jiān)測飛機(jī)廢水箱中的液位有效實現(xiàn)了定點液位報警功能。

參考文獻(xiàn)
董迪晶超聲波液位傳感器的開發(fā)天津天津大學(xué)2008.
杜功煥, 朱哲民, 龔秀芬聲學(xué)基礎(chǔ). 3 南京南京大學(xué)出版社,2012.
李驥, 李力, 鄧勇剛空氣耦合超聲換能器的頻域聲場研究機(jī)械工程學(xué)報,2019,5510) :1016.
何祚鏞, 趙玉芳聲學(xué)理論基礎(chǔ)北京國防工業(yè)出版社1988.
趙俊杰, 王彥, 張賢雨液位計用壓電換能器選型探討自動化與儀器儀表,2013




班寧產(chǎn)品匯總





seo seo